Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Lower and Upper Bounds in Smooth Strongly Convex Optimization - A Unified Approach via Linear Iterative Methods (1410.6387v1)

Published 23 Oct 2014 in math.OC and cs.LG

Abstract: In this thesis we develop a novel framework to study smooth and strongly convex optimization algorithms, both deterministic and stochastic. Focusing on quadratic functions we are able to examine optimization algorithms as a recursive application of linear operators. This, in turn, reveals a powerful connection between a class of optimization algorithms and the analytic theory of polynomials whereby new lower and upper bounds are derived. In particular, we present a new and natural derivation of Nesterov's well-known Accelerated Gradient Descent method by employing simple 'economic' polynomials. This rather natural interpretation of AGD contrasts with earlier ones which lacked a simple, yet solid, motivation. Lastly, whereas existing lower bounds are only valid when the dimensionality scales with the number of iterations, our lower bound holds in the natural regime where the dimensionality is fixed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.