Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Quotient modules of $H^2(\mathbb{D}^n)$: Essential Normality and Boundary Representations (1410.5633v4)

Published 21 Oct 2014 in math.FA, math.CV, and math.OA

Abstract: Let $\mathbb{D}n$ be the open unit polydisc in $\mathbb{C}n$, $n \geq 1$, and let $H2(\mathbb{D}n)$ be the Hardy space over $\mathbb{D}n$. For $n\ge 3$, we show that if $\theta \in H\infty(\mathbb{D}n)$ is an inner function, then the $n$-tuple of commuting operators $(C_{z_1}, \ldots, C_{z_n})$ on the Beurling type quotient module $\mathcal{Q}{\theta}$ is not essentially normal, where [\mathcal{Q}{\theta} = H2(\mathbb{D}n)/ \theta H2(\mathbb{D}n) \quad \mbox{and} \quad C_{z_j} = P_{\mathcal{Q}{\theta}} M{z_j}|{\mathcal{Q}{\theta}}\quad (j = 1, \ldots, n).] Rudin's quotient modules of $H2(\mathbb{D}2)$ are also shown to be not essentially normal. We prove several results concerning boundary representations of $C*$-algebras corresponding to different classes of quotient modules including doubly commuting quotient modules and homogeneous quotient modules.

Summary

We haven't generated a summary for this paper yet.