Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On an analogue of the conjecture of Birch and Swinnerton-Dyer for Abelian schemes over higher dimensional bases over finite fields (1410.5294v2)

Published 20 Oct 2014 in math.NT and math.AG

Abstract: We formulate an analogue of the conjecture of Birch and Swinnerton-Dyer for Abelian schemes with everywhere good reduction over higher dimensional bases over finite fields of characteristic $p$. We prove the prime-to-$p$ part conditionally on the finiteness of the $p$-primary part of the Tate-Shafarevich group or the equality of the analytic and the algebraic rank. If the base is a product of curves, Abelian varieties and K3 surfaces, we prove the prime-to-$p$ part of the conjecture for constant or isoconstant Abelian schemes, in particular the prime-to-$p$ part for (1) relative elliptic curves with good reduction or (2) Abelian schemes with constant isomorphism type of $\mathscr{A}[p]$ or (3) Abelian schemes with supersingular generic fibre, and the full conjecture for relative elliptic curves with good reduction over curves and for constant Abelian schemes over arbitrary bases. We also reduce the conjecture to the case of surfaces as the basis.

Summary

We haven't generated a summary for this paper yet.