Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel and Distributed Methods for Nonconvex Optimization-Part I: Theory (1410.4754v2)

Published 17 Oct 2014 in cs.MA and math.OC

Abstract: In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints. The algorithm solves a sequence of (separable) strongly convex problems and mantains feasibility at each iteration. Convergence to a stationary solution of the original nonconvex optimization is established. Our framework is very general and flexible; it unifies several existing Successive Convex Approximation (SCA)-based algorithms such as (proximal) gradient or Newton type methods, block coordinate (parallel) descent schemes, difference of convex functions methods, and improves on their convergence properties. More importantly, and differently from current SCA approaches, it naturally leads to distributed and parallelizable implementations for a large class of nonconvex problems. This Part I is devoted to the description of the framework in its generality. In Part II we customize our general methods to several multi-agent optimization problems, mainly in communications and networking; the result is a new class of (distributed) algorithms that compare favorably to existing ad-hoc (centralized) schemes (when they exist).

Citations (38)

Summary

We haven't generated a summary for this paper yet.