2000 character limit reached
Orthogonal polynomials through the invariant theory of binary forms (1410.4683v1)
Published 17 Oct 2014 in math.RA
Abstract: We present an algebraic theory of orthogonal polynomials in several variables that includes classical orthogonal polynomials as a special case. Our bottom line is a straightforward connection between apolarity of binary forms and the inner product provided by a linear functional defined on a polynomial ring. Explicit determinantal formulae and multivariable extension of the Heine integral formula are stated. Moreover, a general family of covariants that includes transvectants is introduced. Such covariants turn out to be the average value of classical basis of symmetric polynomials over a set of roots of suitable orthogonal polynomials.