Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry and stability of tautological bundles on Hilbert schemes of points (1409.8229v2)

Published 29 Sep 2014 in math.AG

Abstract: The purpose of this paper is to explore the geometry and establish the slope stability of tautological vector bundles on Hilbert schemes of points on smooth surfaces. By establishing stability in general we complete a series of results of Schlickewei and Wandel who proved the slope stability of these vector bundles for Hilbert schemes of 2 points or 3 points on K3 or abelian surfaces with Picard group restrictions. In exploring the geometry we show that every sufficiently positive semistable vector bundle on a smooth curve arises as the restriction of a tautological vector bundle on the Hilbert scheme of points on the projective plane. Moreover we show the tautological bundle of the tangent bundle is naturally isomorphic to the sheaf of vector fields tangent to the divisor which consists of nonreduced subschemes.

Summary

We haven't generated a summary for this paper yet.