Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation (1409.7923v2)

Published 28 Sep 2014 in nlin.SI, math-ph, and math.MP

Abstract: The the mixed Chen-Lee-Liu derivative nonlinear Schr\"odinger equation (CLL-NLS) can be considered as simplest model to approximate the dynamics of weakly nonlinear and dispersive waves, taking into account the self-steepnening effect (SSE). The latter effect arises as a higher-order correction of the nonlinear Schr\"ordinger equation (NLS), which is known to describe the dynamics of pulses in nonlinear fiber optics, and constiutes a fundamental part of the generalized NLS. Similar effects are decribed within the framework of the modified NLS, also referred to as the Dysthe equation, in hydrodynamics. In this work, we derive fundamental and higher-order solutions of the CLL-NLS by applying the Darboux transformation (DT). Exact expressions of non-vanishing boundary solitons, breathers and a hierarchy of rogue wave solutions are presented. In addition, we discuss the localization characters of such rogue waves, by characterizing their length and width. In particular, we describe how the localization properties of first-order NLS rogue waves can be modified by taking into account the SSE, presented in the CLL-NLS. This is illustrated by use of an analytical and a graphical method. The results may motivate similar analytical studies, extending the family of the reported rogue wave solutions as well as possible experiments in several nonlinear dispersive media, confirming these theoretical results.

Summary

We haven't generated a summary for this paper yet.