Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knots and distributive homology: from arc colorings to Yang-Baxter homology (1409.7044v1)

Published 24 Sep 2014 in math.GT and math.AT

Abstract: This paper is a sequel to my essay "Distributivity versus associativity in the homology theory of algebraic structures" Demonstratio Math., 44(4), 2011, 821-867 (arXiv:1109.4850 [math.GT]). We start from naive invariants of arc colorings and survey associative and distributive magmas and their homology with relation to knot theory. We outline potential relations to Khovanov homology and categorification, via Yang-Baxter operators. We use here the fact that Yang-Baxter equation can be thought of as a generalization of self-distributivity. We show how to define and visualize Yang-Baxter homology, in particular giving a simple description of homology of biquandles.

Summary

We haven't generated a summary for this paper yet.