Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower bounds for the maximum of the Riemann zeta function along vertical lines (1409.6035v3)

Published 21 Sep 2014 in math.NT

Abstract: Let $\alpha \in (1/2,1)$ be fixed. We prove that $$ \max_{0 \leq t \leq T} |\zeta(\alpha+it)| \geq \exp\left(\frac{c_\alpha (\log T){1-\alpha}}{(\log \log T)\alpha}\right) $$ for all sufficiently large $T$, where we can choose $c_\alpha = 0.18 (2\alpha-1){1-\alpha}$. The same result has already been obtained by Montgomery, with a smaller value for $c_\alpha$. However, our proof, which uses a modified version of Soundararajan's "resonance method" together with ideas of Hilberdink, is completely different from Montgomery's. This new proof also allows us to obtain lower bounds for the measure of those $t \in [0,T]$ for which $|\zeta(\alpha+it)|$ is of the order mentioned above.

Summary

We haven't generated a summary for this paper yet.