Corrector estimates for elliptic systems with random periodic coefficients
Abstract: We consider an elliptic system of equations on the torus $\left[ -\frac{L}{2}, \frac{L}{2} \right)d$ with random coefficients $A$, that are assumed to be coercive and stationary. Using two different approaches we obtain moment bounds on the gradient of the corrector, independent of the domain size $L$. In the first approach we use Green function representation. For that we require $A$ to be locally H\"older continuous and distribution of $A$ to satisfy Logarithmic Sobolev inequality. The second method works for non-smooth (possibly discontinuous) coefficients, and it requires that statistics of $A$ satisfies Spectral Gap estimate.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.