Papers
Topics
Authors
Recent
Search
2000 character limit reached

The spectral excess theorem for distance-regular graphs having distance-$d$ graph with fewer distinct eigenvalues

Published 17 Sep 2014 in math.CO | (1409.5146v1)

Abstract: Let $\Gamma$ be a distance-regular graph with diameter $d$ and Kneser graph $K=\Gamma_d$, the distance-$d$ graph of $\Gamma$. We say that $\Gamma$ is partially antipodal when $K$ has fewer distinct eigenvalues than $\Gamma$. In particular, this is the case of antipodal distance-regular graphs ($K$ with only two distinct eigenvalues), and the so-called half-antipodal distance-regular graphs ($K$ with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with $d$ distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance $d$ from every vertex. This can be seen as a general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.