Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The spectral excess theorem for distance-regular graphs having distance-$d$ graph with fewer distinct eigenvalues (1409.5146v1)

Published 17 Sep 2014 in math.CO

Abstract: Let $\Gamma$ be a distance-regular graph with diameter $d$ and Kneser graph $K=\Gamma_d$, the distance-$d$ graph of $\Gamma$. We say that $\Gamma$ is partially antipodal when $K$ has fewer distinct eigenvalues than $\Gamma$. In particular, this is the case of antipodal distance-regular graphs ($K$ with only two distinct eigenvalues), and the so-called half-antipodal distance-regular graphs ($K$ with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with $d$ distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance $d$ from every vertex. This can be seen as a general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.

Summary

We haven't generated a summary for this paper yet.