Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jump-Diffusion Approximation of Stochastic Reaction Dynamics: Error bounds and Algorithms (1409.4303v1)

Published 15 Sep 2014 in q-bio.QM, math.PR, and q-bio.MN

Abstract: Biochemical reactions can happen on different time scales and also the abundance of species in these reactions can be very different from each other. Classical approaches, such as deterministic or stochastic approach, fail to account for or to exploit this multi-scale nature, respectively. In this paper, we propose a jump-diffusion approximation for multi-scale Markov jump processes that couples the two modeling approaches. An error bound of the proposed approximation is derived and used to partition the reactions into fast and slow sets, where the fast set is simulated by a stochastic differential equation and the slow set is modeled by a discrete chain. The error bound leads to a very efficient dynamic partitioning algorithm which has been implemented for several multi-scale reaction systems. The gain in computational efficiency is illustrated by a realistically sized model of a signal transduction cascade coupled to a gene expression dynamics.

Summary

We haven't generated a summary for this paper yet.