2000 character limit reached
A Liouville theorem for $α$-harmonic functions in $\mathbb{R}^n_+$ (1409.4106v1)
Published 14 Sep 2014 in math.AP
Abstract: In this paper, we consider $\alpha$-harmonic functions in the half space $\mathbb{R}n_+$: \begin{equation} \left{\begin{array}{ll} (-\Delta){\alpha/2} u(x)=0,~u(x)>0, & x\in\mathbb{R}n_+, \ u(x)\equiv 0, & x\notin \mathbb{R}{n}_{+}. \end{array}\right. \end{equation} We prove that all the solutions have to assume the form \begin{equation} u(x)=\left{\begin{array}{ll}Cx_n{\alpha/2}, & \qquad x\in\mathbb{R}n_+, \ 0, & \qquad x\notin\mathbb{R}{n}_{+}, \end{array}\right. \label{2} \end{equation} for some positive constant $C$.