Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Liouville theorem for $α$-harmonic functions in $\mathbb{R}^n_+$ (1409.4106v1)

Published 14 Sep 2014 in math.AP

Abstract: In this paper, we consider $\alpha$-harmonic functions in the half space $\mathbb{R}n_+$: \begin{equation} \left{\begin{array}{ll} (-\Delta){\alpha/2} u(x)=0,~u(x)>0, & x\in\mathbb{R}n_+, \ u(x)\equiv 0, & x\notin \mathbb{R}{n}_{+}. \end{array}\right. \end{equation} We prove that all the solutions have to assume the form \begin{equation} u(x)=\left{\begin{array}{ll}Cx_n{\alpha/2}, & \qquad x\in\mathbb{R}n_+, \ 0, & \qquad x\notin\mathbb{R}{n}_{+}, \end{array}\right. \label{2} \end{equation} for some positive constant $C$.

Citations (18)

Summary

We haven't generated a summary for this paper yet.