Solyanik estimates and local Hölder continuity of halo functions of geometric maximal operators (1409.3811v2)
Abstract: Let $\mathcal{B}$ be a homothecy invariant basis consisting of convex sets in $\mathbb{R}n$, and define the associated geometric maximal operator $M_{\mathcal{B}}$ by $$ M_{\mathcal{B}} f(x) :=\sup_{x \in R \in \mathcal{B}}\frac{1}{|R|}\int_R |f| $$ and the halo function $\phi_{\mathcal{B}}(\alpha)$ on $(1,\infty)$ by $$\phi_{\mathcal B}(\alpha) :=\sup_{E \subset \mathbb{R}n :\, 0 < |E| < \infty}\frac{1}{|E|}|{x\in \mathbb{R}n : M_{\mathcal{B}} \chi_E (x) >1/\alpha}|. $$ It is shown that if $\phi_{\mathcal{B}}(\alpha)$ satisfies the Solyanik estimate $\phi_{\mathcal B}(\alpha) - 1 \leq C (1 - \frac{1}{\alpha})p$ for $\alpha\in(1,\infty)$ sufficiently close to 1 then $\phi_{\mathcal{B}}$ lies in the H\"older class $ Cp(1,\infty)$. As a consequence we obtain that the halo functions associated with the Hardy-Littlewood maximal operator and the strong maximal operator on $\mathbb{R}n$ lie in the H\"older class $C{1/n}(1,\infty)$.