Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Kernel Combination for Test of Independence against Local Alternatives (1409.3636v2)

Published 12 Sep 2014 in stat.ME

Abstract: Testing the independence between two random variables $x$ and $y$ is an important problem in statistics and machine learning, where the kernel-based tests of independence is focused to address the study of dependence recently. The advantage of the kernel framework rests on its flexibility in choice of kernel. The Hilbert-Schmidt Independence Criterion (HSIC) was shown to be equivalent to a class of tests, where the tests are based on different distance-induced kernel pairs. In this work, we propose to select the optimal kernel pair by considering local alternatives, and evaluate the efficiency using the quadratic time estimator of HSIC. The local alternative offers the advantage that the measure of efficiency do not depend on a particular alternative, and only requires the knowledge of the asymptotic null distribution of the test. We show in our experiments that the proposed strategy results in higher power than other existing kernel selection approaches.

Summary

We haven't generated a summary for this paper yet.