Papers
Topics
Authors
Recent
2000 character limit reached

Metric operators, generalized hermiticity and lattices of Hilbert lpaces

Published 11 Sep 2014 in math-ph and math.MP | (1409.3497v1)

Abstract: A quasi-Hermitian operator is an operator that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Whereas those metric operators are in general assumed to be bounded, we analyze the structure generated by unbounded metric operators in a Hilbert space. It turns out that such operators generate a canonical lattice of Hilbert spaces, that is, the simplest case of a partial inner product space (PIP-space). We introduce several generalizations of the notion of similarity between operators, in particular, the notion of quasi-similarity, and we explore to what extend they preserve spectral properties. Then we apply some of the previous results to operators on a particular PIP-space, namely, a scale of Hilbert spaces generated by a metric operator. Finally, motivated by the recent developments of pseudo-Hermitian quantum mechanics, we reformulate the notion of pseudo-Hermitian operators in the preceding formalism.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.