Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of cutoff for reversible Markov chains (1409.3250v4)

Published 10 Sep 2014 in math.PR

Abstract: A sequence of Markov chains is said to exhibit (total variation) cutoff if the convergence to stationarity in total variation distance is abrupt. We consider reversible lazy chains. We prove a necessary and sufficient condition for the occurrence of the cutoff phenomena in terms of concentration of hitting time of "worst" (in some sense) sets of stationary measure at least $\alpha$, for some $\alpha \in (0,1)$. We also give general bounds on the total variation distance of a reversible chain at time $t$ in terms of the probability that some "worst" set of stationary measure at least $\alpha$ was not hit by time $t$. As an application of our techniques we show that a sequence of lazy Markov chains on finite trees exhibits a cutoff iff the ratio of their relaxation-times and their (lazy) mixing-times tends to 0.

Summary

We haven't generated a summary for this paper yet.