Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intrinsic scales for high-dimensional LEVY-driven models with non-Markovian synchronizing updates (1409.2919v1)

Published 9 Sep 2014 in math.PR, cs.SY, math-ph, and math.MP

Abstract: We propose stochastic $N$-component synchronization models $(x_{1}(t),...,x_{N}(t))$, $x_{j}\in\mathbb{R}{d}$, $t\in\mathbb{R}{+}$, whose dynamics is described by Levy processes and synchronizing jumps. We prove that symmetric models reach synchronization in a stochastic sense: differences between components $d{kj}{(N)}(t)=x_{k}(t)-x_{j}(t)$ have limits in distribution as $t\rightarrow\infty$. We give conditions of existence of natural (intrinsic) space scales for large synchronized systems, i.e., we are looking for such sequences ${b_{N}}$ that distribution of $d_{kj}{(N)}(\infty)/b_{N}$ converges to some limit as $N\rightarrow\infty$. It appears that such sequence exists if the Levy process enters a domain of attraction of some stable law. For Markovian synchronization models based on $\alpha$-stable Levy processes this results holds for any finite $N$ in the precise form with $b_{N}=(N-1){1/\alpha}$. For non-Markovian models similar results hold only in the asymptotic sense. The class of limiting laws includes the Linnik distributions. We also discuss generalizations of these theorems to the case of non-uniform matrix-based intrinsic scales. The central point of our proofs is a representation of characteristic functions of $d_{kj}{(N)}(t)$ via probability distribution of a superposition of $N$ independent renewal processes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.