Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MoodBar: Increasing new user retention in Wikipedia through lightweight socialization (1409.1496v1)

Published 4 Sep 2014 in cs.SI, cs.HC, and physics.soc-ph

Abstract: Socialization in online communities allows existing members to welcome and recruit newcomers, introduce them to community norms and practices, and sustain their early participation. However, socializing newcomers does not come for free: in large communities, socialization can result in a significant workload for mentors and is hard to scale. In this study we present results from an experiment that measured the effect of a lightweight socialization tool on the activity and retention of newly registered users attempting to edit for the first time Wikipedia. Wikipedia is struggling with the retention of newcomers and our results indicate that a mechanism to elicit lightweight feedback and to provide early mentoring to newcomers improves their chances of becoming long-term contributors.

Citations (43)

Summary

We haven't generated a summary for this paper yet.