2000 character limit reached
Existence of common and upper frequently hypercyclic subspaces (1409.0995v1)
Published 3 Sep 2014 in math.DS and math.FA
Abstract: We provide criteria for the existence of upper frequently hypercyclic subspaces and for common hypercyclic subspaces, which include the following consequences. There exist frequently hypercyclic operators with upper-frequently hypercyclic subspaces and no frequently hypercyclic subspace. On the space of entire functions, each differentiation operator induced by a non-constant polynomial supports an upper frequently hypercyclic subspace, and the family of its non-zero scalar multiples has a common hypercyclic subspace. A question of Costakis and Sambarino on the existence of a common hypercyclic subspace for a certain uncountable family of weighted shift operators is also answered.