Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does non-stationary spatial data always require non-stationary random fields? (1409.0743v4)

Published 2 Sep 2014 in stat.ME and stat.AP

Abstract: A stationary spatial model is an idealization and we expect that the true dependence structures of physical phenomena are spatially varying, but how should we handle this non-stationarity in practice? We study the challenges involved in applying a flexible non-stationary model to a dataset of annual precipitation in the conterminous US, where exploratory data analysis shows strong evidence of a non-stationary covariance structure. The aim of this paper is to investigate the modelling pipeline once non-stationarity has been detected in spatial data. We show that there is a real danger of over-fitting the model and that careful modelling is necessary in order to properly account for varying second-order structure. In fact, the example shows that sometimes non-stationary Gaussian random fields are not necessary to model non-stationary spatial data.

Summary

We haven't generated a summary for this paper yet.