Operations and poly-operations in Algebraic Cobordism (1409.0741v6)
Abstract: We describe all operations from a theory A* obtained from Algebraic Cobordism of M.Levine-F.Morel by change of coefficients to any oriented cohomology theory B* (in the case of a field of characteristic zero). We prove that such an operation can be reconstructed out of it's action on the products of projective spaces. This reduces the construction of operations to algebra and extends the additive case done earlier, as well as the topological one obtained by T.Kashiwabara. The key new ingredients which permit us to treat the non-additive operations are: the use of "poly-operations" and the "Discrete Taylor expansion". As an application we construct the only missing, the 0-th (non-additive) Symmetric operation, for arbitrary p, which permits to sharpen results on the structure of Algebraic Cobordism. We also prove the general Riemann-Roch theorem for arbitrary (even non-additive) operations (over an arbitrary field). This extends the multiplicative case proved by I.Panin.