Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence to global equilibrium for Fokker-Planck equations on a graph and Talagrand-type inequalities (1409.0711v1)

Published 31 Aug 2014 in math.CA, math.AP, math.DS, math.MG, and math.PR

Abstract: In recent work, Chow, Huang, Li and Zhou introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When $N\ge 2$ is the number of vertices of the graph, they show that the corresponding Fokker-Planck equation is a system of $N$ nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. The different choices for inner products on the space of probability distributions result in different Fokker-Planck equations for the same process. Each of these Fokker-Planck equations has a unique global equilibrium, which is a Gibbs distribution. In this paper we study the {\em speed of convergence} towards global equilibrium for the solution of these Fokker-Planck equations on a graph, and prove that the convergence is indeed exponential. The rate as measured by the decay of the $L_2$ norm can be bound in terms of the spectral gap of the Laplacian of the graph, and as measured by the decay of (relative) entropy be bound using the modified logarithmic Sobolev constant of the graph. With the convergence result, we also prove two Talagrand-type inequalities relating relative entropy and Wasserstein metric, based on two different metrics introduced in [CHLZ] The first one is a local inequality, while the second is a global inequality with respect to the "lower bound metric" from [CHLZ].

Summary

We haven't generated a summary for this paper yet.