Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A lattice framework for pricing display advertisement options with the stochastic volatility underlying model (1409.0697v4)

Published 2 Sep 2014 in cs.GT and q-fin.CP

Abstract: Advertisement (abbreviated ad) options are a recent development in online advertising. Simply, an ad option is a first look contract in which a publisher or search engine grants an advertiser a right but not obligation to enter into transactions to purchase impressions or clicks from a specific ad slot at a pre-specified price on a specific delivery date. Such a structure provides advertisers with more flexibility of their guaranteed deliveries. The valuation of ad options is an important topic and previous studies on ad options pricing have been mostly restricted to the situations where the underlying prices follow a geometric Brownian motion (GBM). This assumption is reasonable for sponsored search; however, some studies have also indicated that it is not valid for display advertising. In this paper, we address this issue by employing a stochastic volatility (SV) model and discuss a lattice framework to approximate the proposed SV model in option pricing. Our developments are validated by experiments with real advertising data: (i) we find that the SV model has a better fitness over the GBM model; (ii) we validate the proposed lattice model via two sequential Monte Carlo simulation methods; (iii) we demonstrate that advertisers are able to flexibly manage their guaranteed deliveries by using the proposed options, and publishers can have an increased revenue when some of their inventories are sold via ad options.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bowei Chen (22 papers)
  2. Jun Wang (991 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.