Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Unit Disk and Interval Representation of Planar Graphs (1408.6928v1)

Published 29 Aug 2014 in cs.DM, cs.CG, and math.CO

Abstract: We study a variant of intersection representations with unit balls, that is, unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far sets, the goal is to represent the vertices of the graph by unit balls so that the balls representing two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edge-partition. On the other hand, every series-parallel graph admits such a representation with unit disks for any near/far labeling of the edges. We also show that the representation problem on the line is equivalent to a variant of a graph coloring. We give examples of girth-4 planar and girth-3 outerplanar graphs that have no such representation with unit intervals. On the other hand, all triangle-free outerplanar graphs and all graphs with maximum average degree less than 26/11 can always be represented. In particular, this gives a simple proof of representability of all planar graphs with large girth.

Citations (1)

Summary

We haven't generated a summary for this paper yet.