Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An MPC approach to output-feedback control of stochastic linear discrete-time systems (1408.6723v1)

Published 28 Aug 2014 in cs.SY

Abstract: In this paper we propose an output-feedback Model Predictive Control (MPC) algorithm for linear discrete-time systems affected by a possibly unbounded additive noise and subject to probabilistic constraints. In case the noise distribution is unknown, the chance constraints on the input and state variables are reformulated by means of the Chebyshev - Cantelli inequality. The recursive feasibility of the proposed algorithm is guaranteed and the convergence of the state to a suitable neighbor of the origin is proved under mild assumptions. The implementation issues are thoroughly addressed showing that, with a proper choice of the design parameters, its computational load can be made similar to the one of a standard stabilizing MPC algorithm. Two examples are discussed in details, with the aim of providing an insight on the performance achievable by the proposed control scheme.

Citations (10)

Summary

We haven't generated a summary for this paper yet.