Stability of Kronecker coefficients via discrete tomography (1408.6219v1)
Abstract: In this paper we give a new sufficient condition for a general stability of Kronecker coefficients, which we call it additive stability. It was motivated by a recent talk of J. Stembridge at the conference in honor of Richard P. Stanley's 70th birthday, and it is based on work of the author on discrete tomography along the years. The main contribution of this paper is the discovery of the connection between additivity of integer matrices and stability of Kronecker coefficients. Additivity, in our context, is a concept from discrete tomography. Its advantage is that it is very easy to produce lots of examples of additive matrices and therefore of new instances of stability properties. We also show that Stembridge's hypothesis and additivity are closely related, and prove that all stability properties of Kronecker coefficients discovered before fit into additive stability.