Okounkov's BC-type interpolation Macdonald polynomials and their q=1 limit
Abstract: This paper surveys eight classes of polynomials associated with $A$-type and $BC$-type root systems: Jack, Jacobi, Macdonald and Koornwinder polynomials and interpolation (or shifted) Jack and Macdonald polynomials and their $BC$-type extensions. Among these the $BC$-type interpolation Jack polynomials were probably unobserved until now. Much emphasis is put on combinatorial formulas and binomial formulas for (most of) these polynomials. Possibly new results derived from these formulas are a limit from Koornwinder to Macdonald polynomials, an explicit formula for Koornwinder polynomials in two variables, and a combinatorial expression for the coefficients of the expansion of $BC$-type Jacobi polynomials in terms of Jack polynomials which is different from Macdonald's combinatorial expression. For these last coefficients in the two-variable case the explicit expression in Koornwinder & Sprinkhuizen (1978) is now obtained in a quite different way.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.