Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Bayesian Estimation of Conditional Densities (1408.5355v3)

Published 22 Aug 2014 in math.ST and stat.TH

Abstract: We consider a non-parametric Bayesian model for conditional densities. The model is a finite mixture of normal distributions with covariate dependent multinomial logit mixing probabilities. A prior for the number of mixture components is specified on positive integers. The marginal distribution of covariates is not modeled. We study asymptotic frequentist behavior of the posterior in this model. Specifically, we show that when the true conditional density has a certain smoothness level, then the posterior contraction rate around the truth is equal up to a log factor to the frequentist minimax rate of estimation. An extension to the case when the covariate space is unbounded is also established. As our result holds without a priori knowledge of the smoothness level of the true density, the established posterior contraction rates are adaptive. Moreover, we show that the rate is not affected by inclusion of irrelevant covariates in the model. In Monte Carlo simulations, a version of the model compares favorably to a cross-validated kernel conditional density estimator.

Summary

We haven't generated a summary for this paper yet.