Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras (1408.4842v2)

Published 20 Aug 2014 in math-ph and math.MP

Abstract: The conformal Galilei algebra (CGA) is a non-semisimple Lie algebra labelled by two parameters $d$ and $\ell$. The aim of the present work is to investigate the lowest weight representations of CGA with $d = 1$ for any integer value of $\ell$. First we focus on the reducibility of the Verma modules. We give a formula for the Shapovalov determinant and it follows that the Verma module is irreducible if $\ell = 1$ and the lowest weight is nonvanishing. We prove that the Verma modules contain many singular vectors, i.e., they are reducible when $\ell \neq 1$. Using the singular vectors, hierarchies of partial differential equations defined on the group manifold are derived. The differential equations are invariant under the kinematical transformation generated by CGA. Finally we construct irreducible lowest weight modules obtained from the reducible Verma modules.

Summary

We haven't generated a summary for this paper yet.