Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DAHA and iterated torus knots (1408.4348v2)

Published 19 Aug 2014 in math.QA and math.AG

Abstract: The theory of DAHA-Jones polynomials is extended from torus knots to their arbitrary iterations (for any reduced root systems and weights), which incudes the polynomiality, duality and other properties of the DAHA superpolynomials. Presumably they coincide with the reduced stable Khovanov-Rozansky polynomials in the case of non-negative coefficients. The new theory matches well the classical theory of algebraic knots and (unibranch) plane curve singularities; the Puiseux expansion naturally emerges. The corresponding DAHA superpolynomials are expected to coincide with the reduced ones in the Oblomkov-Shende-Rasmussen Conjecture upon its generalization to arbitrary dominant weights. For instance, the DAHA uncolored superpolynomials at a=0, q=1 are conjectured to provide the Betti numbers of the Jacobian factors of the corresponding singularities.

Summary

We haven't generated a summary for this paper yet.