Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Sublinear Convergence Rate of Multi-Block ADMM (1408.4265v2)

Published 19 Aug 2014 in math.OC

Abstract: The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems. Despite of its success in practice, the convergence properties of the standard ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions with $N$ block variables linked by linear constraints, have remained unclear for a very long time. In this paper, we present convergence and convergence rate results for the standard ADMM applied to solve $N$-block $(N\geq 3)$ convex minimization problem, under the condition that one of these functions is convex (not necessarily strongly convex) and the other $N-1$ functions are strongly convex. Specifically, in that case the ADMM is proven to converge with rate $O(1/t)$ in a certain ergodic sense, and $o(1/t)$ in non-ergodic sense, where $t$ denotes the number of iterations. As a by-product, we also provide a simple proof for the $O(1/t)$ convergence rate of two-block ADMM in terms of both objective error and constraint violation, without assuming any condition on the penalty parameter and strong convexity on the functions.

Summary

We haven't generated a summary for this paper yet.