Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Steinberg type decomposition theorem for higher level Demazure modules (1408.4090v1)

Published 18 Aug 2014 in math.RT

Abstract: We study Demazure modules which occur in a level $\ell$ irreducible integrable representation of an affine Lie algebra. We also assume that they are stable under the action of the standard maximal parabolic subalgebra of the affine Lie algebra. We prove that such a module is isomorphic to the fusion product of "prime" \ Demazure modules, where the prime factors are indexed by dominant integral weights which are either a multiple of $\ell$ or take value less than $\ell$ on all simple coroots. Our proof depends on a technical result which we prove in all the classical cases and $G_2$. Calculations with mathematica show that this result is correct for small values of the level. Using our result, we show that there exist generalizations of $Q$--systems to pairs of weights where one of the weights is not necessarily rectangular and is of a different level. Our results also allow us to compare the multiplicities of an irreducible representation occuring in the tensor product of certian pairs of irreducible representations, i.e., we establish a version of Schur positvity for such pairs of irreducible modules for a simple Lie algebra.

Summary

We haven't generated a summary for this paper yet.