Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The classification of certain linked $3$-manifolds in $6$-space (1408.3918v2)

Published 18 Aug 2014 in math.GT

Abstract: We work entirely in the smooth category. An embedding $f:(S2\times S1)\sqcup S3\rightarrow {\mathbb R}6$ is {\it Brunnian}, if the restriction of $f$ to each component is isotopic to the standard embedding. For each triple of integers $k,m,n$ such that $m\equiv n \pmod{2}$, we explicitly construct a Brunnian embedding $f_{k,m,n}:(S2\times S1)\sqcup S3 \rightarrow {\mathbb R}6$ such that the following theorem holds. Theorem: Any Brunnian embedding $f:(S2\times S1)\sqcup S3\rightarrow {\mathbb R}6$ is isotopic to $f_{k,m,n}$ for some integers $k,m,n$ such that $m\equiv n \pmod{2}$. Two embeddings $f_{k,m,n}$ and $f_{k',m',n'}$ are isotopic if and only if $k=k'$, $m\equiv m' \pmod{2k}$ and $n\equiv n' \pmod{2k}$. We use Haefliger's classification of embeddings $S3\sqcup S3\rightarrow {\mathbb R}6$ in our proof. The following corollary shows that the relation between the embeddings $(S2\times S1)\sqcup S3\rightarrow {\mathbb R}6$ and $S3\sqcup S3\rightarrow {\mathbb R}6$ is not trivial. Corollary: There exist embeddings $f:(S2\times S1)\sqcup S3\rightarrow {\mathbb R}6$ and $g,g':S3\sqcup S3\rightarrow {\mathbb R}6$ such that the componentwise embedded connected sum $f#g$ is isotopic to $f#g'$ but $g$ is not isotopic to $g'$.

Summary

We haven't generated a summary for this paper yet.