Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extensions of simple modules over Leavitt path algebras (1408.3580v2)

Published 15 Aug 2014 in math.RA

Abstract: Let $E$ be a directed graph, $K$ any field, and let $L_K(E)$ denote the Leavitt path algebra of $E$ with coefficients in $K$. For each rational infinite path $c\infty$ of $E$ we explicitly construct a projective resolution of the corresponding Chen simple left $L_K(E)$-module $V_{[c\infty]}$. Further, when $E$ is row-finite, for each irrational infinite path $p$ of $E$ we explicitly construct a projective resolution of the corresponding Chen simple left $L_K(E)$-module $V_{[p]}$. For Chen simple modules $S,T$ we describe ${\rm Ext}_{L_K(E)}1(S,T)$ by presenting an explicit $K$-basis. For any graph $E$ containing at least one cycle, this description guarantees the existence of indecomposable left $L_K(E)$-modules of any prescribed finite length.

Summary

We haven't generated a summary for this paper yet.