Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral structures in automorphic line bundles on the $p$-adic upper half plane (1408.3342v1)

Published 14 Aug 2014 in math.NT and math.AG

Abstract: Given an automorphic line bundle ${\mathcal O}X(k)$ of weight $k$ on the Drinfel'd upper half plane $X$ over a local field $K$, we construct a ${\rm GL}_2(K)$-equivariant integral lattice ${\mathcal O}{\widehat{\mathfrak X}}(k)$ in ${\mathcal O}X(k)\otimes_K\widehat{K}$, as a coherent sheaf on the formal model $\widehat{\mathfrak{X}}$ underlying $X\otimes_K\widehat{K}$. Here $\widehat{K}/K$ is ramified of degree $2$. This generalizes a construction of Teitelbaum from the case of even weight $k$ to arbitrary integer weight $k$. We compute $H*(\widetilde{\mathfrak{X}},{\mathcal O}{\widehat{\mathfrak X}}(k))$ and obtain applications to the de Rham cohomology $H_{dR}1(\Gamma\backslash X,{\rm Sym}Kk({\rm St}))$ with coefficients in the $k$-th symmetric power of the standard representation of ${\rm SL}_2(K)$ (where $k\ge0$) of projective curves $\Gamma\backslash X$ uniformized by $X$: namely, we prove the degeneration of a certain reduced Hodge spectral sequence computing $H{dR}1(\Gamma\backslash X,{\rm Sym}Kk({\rm St}))$, we re-prove the Hodge decomposition of $H{dR}1(\Gamma\backslash X,{\rm Sym}Kk({\rm St}))$ and show that the monodromy operator on $H{dR}1(\Gamma\backslash X,{\rm Sym}_Kk({\rm St}))$ respects integral de Rham structures and is induced by a "universal"{} monodromy operator defined on $\widehat{\mathfrak{X}}$, i.e. before passing to the $\Gamma$-quotient.

Summary

We haven't generated a summary for this paper yet.