Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Diffusion Limit for Reaction-Diffusion Systems with Stochastic Neumann Boundary Conditions (1408.2563v1)

Published 11 Aug 2014 in math.AP

Abstract: We consider a class of reaction-diffusion equations with a stochastic perturbation on the boundary. We show that in the limit of fast diffusion, one can rigorously approximate solutions of the system of PDEs with stochastic Neumann boundary conditions by the solution of a suitable stochastic/deterministic differential equation for the average concentration that involves reactions only. An interesting effect occurs, if the noise on the boundary does not change the averaging concentration, but is sufficiently large. Then surprising additional effective reaction terms appear. We focus on systems with polynomial nonlinearities only and give applications to the two dimensional nonlinear heat equation and the cubic auto-catalytic reaction between two chemicals.

Summary

We haven't generated a summary for this paper yet.