Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FP//LINSPACE computability of Riemann zeta function in Ko-Friedman model (1408.2362v4)

Published 11 Aug 2014 in cs.CC

Abstract: In the present paper, we construct an algorithm for the evaluation of real Riemann zeta function $\zeta(s)$ for all real $s$, $s>1$, in polynomial time and linear space on Turing machines in Ko-Friedman model. The algorithms is based on a series expansion of real Riemann zeta function $\zeta(s)$ (the series globally convergents) and uses algorithms for the evaluation of real function $(1+x)h$ and hypergeometric series in polynomial time and linear space. The algorithm from the present paper modified in an obvious way to work with the complex numbers can be used to evaluate complex Riemann zeta function $\zeta(s)$ for $s=\sigma+\mathbf{i}t$, $\sigma\ne 1$ (so, also for the case of $\sigma<1$), in polynomial time and linear space in $n$ wherein $2{-n}$ is a precision of the computation; the modified algorithm will be also polynomial time and linear space in $\lceil \log_2(t)\rceil$ and exponential time and exponential space in $\lceil \log_2(\sigma)\rceil$.

Summary

We haven't generated a summary for this paper yet.