Expected volume and Euler characteristic of random submanifolds (1408.2107v3)
Abstract: In a closed manifold of positive dimension $n$, we estimate the expected volume and Euler characteristic for random submanifolds of codimension $r\in {1,...,n}$ in two different settings. On one hand, we consider a closed Riemannian manifold and some positive $\lambda$. Then we take $r$ independent random functions in the direct sum of the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues less than $\lambda$ and consider the random submanifold defined as the common zero set of these $r$ functions. We compute asymptotics for the mean volume and Euler characteristic of this random submanifold as $\lambda$ goes to infinity. On the other hand, we consider a complex projective manifold defined over the reals, equipped with an ample line bundle $\mathcal{L}$ and a rank $r$ holomorphic vector bundle $\mathcal{E}$ that are also defined over the reals. Then we get asymptotics for the expected volume and Euler characteristic of the real vanishing locus of a random real holomorphic section of $\mathcal{E}\otimes\mathcal{L}d$ as $d$ goes to infinity. The same techniques apply to both settings.