Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes (1408.2039v1)

Published 9 Aug 2014 in cs.LG and stat.ML

Abstract: Probabilistic matrix factorization (PMF) is a powerful method for modeling data associ- ated with pairwise relationships, Finding use in collaborative Filtering, computational bi- ology, and document analysis, among other areas. In many domains, there are additional covariates that can assist in prediction. For example, when modeling movie ratings, we might know when the rating occurred, where the user lives, or what actors appear in the movie. It is difficult, however, to incorporate this side information into the PMF model. We propose a framework for incorporating side information by coupling together multi- ple PMF problems via Gaussian process priors. We replace scalar latent features with func- tions that vary over the covariate space. The GP priors on these functions require them to vary smoothly and share information. We apply this new method to predict the scores of professional basketball games, where side information about the venue and date of the game are relevant for the outcome.

Citations (87)

Summary

We haven't generated a summary for this paper yet.