Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions (1408.1920v1)

Published 8 Aug 2014 in math.NA and math.PR

Abstract: In this paper we study algorithms to find a Gaussian approximation to a target measure defined on a Hilbert space of functions; the target measure itself is defined via its density with respect to a reference Gaussian measure. We employ the Kullback-Leibler divergence as a distance and find the best Gaussian approximation by minimizing this distance. It then follows that the approximate Gaussian must be equivalent to the Gaussian reference measure, defining a natural function space setting for the underlying calculus of variations problem. We introduce a computational algorithm which is well-adapted to the required minimization, seeking to find the mean as a function, and parameterizing the covariance in two different ways: through low rank perturbations of the reference covariance; and through Schr\"odinger potential perturbations of the inverse reference covariance. Two applications are shown: to a nonlinear inverse problem in elliptic PDEs, and to a conditioned diffusion process. We also show how the Gaussian approximations we obtain may be used to produce improved pCN-MCMC methods which are not only well-adapted to the high-dimensional setting, but also behave well with respect to small observational noise (resp. small temperatures) in the inverse problem (resp. conditioned diffusion).

Citations (57)

Summary

We haven't generated a summary for this paper yet.