Papers
Topics
Authors
Recent
Search
2000 character limit reached

Graphs for margins of Bayesian networks

Published 8 Aug 2014 in math.ST, stat.OT, and stat.TH | (1408.1809v2)

Abstract: Directed acyclic graph (DAG) models, also called Bayesian networks, impose conditional independence constraints on a multivariate probability distribution, and are widely used in probabilistic reasoning, machine learning and causal inference. If latent variables are included in such a model, then the set of possible marginal distributions over the remaining (observed) variables is generally complex, and not represented by any DAG. Larger classes of mixed graphical models, which use multiple edge types, have been introduced to overcome this; however, these classes do not represent all the models which can arise as margins of DAGs. In this paper we show that this is because ordinary mixed graphs are fundamentally insufficiently rich to capture the variety of marginal models. We introduce a new class of hyper-graphs, called mDAGs, and a latent projection operation to obtain an mDAG from the margin of a DAG. We show that each distinct marginal of a DAG model is represented by at least one mDAG, and provide graphical results towards characterizing when two such marginal models are the same. Finally we show that mDAGs correctly capture the marginal structure of causally-interpreted DAGs under interventions on the observed variables.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.