Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Generalization of the C-Bound to Structured Output Ensemble Methods (1408.1336v2)

Published 6 Aug 2014 in stat.ML

Abstract: This paper generalizes an important result from the PAC-Bayesian literature for binary classification to the case of ensemble methods for structured outputs. We prove a generic version of the \Cbound, an upper bound over the risk of models expressed as a weighted majority vote that is based on the first and second statistical moments of the vote's margin. This bound may advantageously $(i)$ be applied on more complex outputs such as multiclass labels and multilabel, and $(ii)$ allow to consider margin relaxations. These results open the way to develop new ensemble methods for structured output prediction with PAC-Bayesian guarantees.

Summary

We haven't generated a summary for this paper yet.