Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Calculus with respect to Gaussian Processes (1408.1020v3)

Published 5 Aug 2014 in math.PR

Abstract: Stochastic integration with respect to Gaussian processes, such as fractional Brownian motion (fBm) or multifractional Brownian motion (mBm), has raised strong interest in recent years, motivated in particular by applications in finance, Internet traffic modeling and biomedicine. The aim of this work to define and develop, using White Noise Theory, an anticipative stochastic calculus with respect to a large class of Gaussian processes, denoted G, that contains, among many other processes, Volterra processes (and thus fBm) and also mBm. This stochastic calculus includes a definition of a stochastic integral, It^o formulas (both for tempered distributions and for functions with sub-exponential growth), a Tanaka Formula as well as a definition, and a short study, of (both weighted and non weighted) local times of elements of G . In that view, a white noise derivative of any Gaussian process G of G is defined and used to integrate, with respect to G, a large class of stochastic processes, using Wick products. A comparison of our integral wrt elements of G to the ones provided by Malliavin calculus in [AMN01] and by It^o stochastic calculus is also made. Moreover, one shows that the stochastic calculus with respect to Gaussian processes provided in this work generalizes the stochastic calculus originally proposed for fBm in [EVdH03, BS{\O}W04, Ben03a] and for mBm in [LLV14, Leb13, LLVH14]. Likewise, it generalizes results given in [NT06] and some results given in [AMN01]. In addition, it offers alternative conditions to the ones required in [AMN01] when one deals with stochastic calculus with respect to Gaussian processes.

Summary

We haven't generated a summary for this paper yet.