Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes

Published 4 Aug 2014 in stat.AP and stat.CO | (1408.0777v3)

Abstract: Basketball games evolve continuously in space and time as players constantly interact with their teammates, the opposing team, and the ball. However, current analyses of basketball outcomes rely on discretized summaries of the game that reduce such interactions to tallies of points, assists, and similar events. In this paper, we propose a framework for using optical player tracking data to estimate, in real time, the expected number of points obtained by the end of a possession. This quantity, called \textit{expected possession value} (EPV), derives from a stochastic process model for the evolution of a basketball possession; we model this process at multiple levels of resolution, differentiating between continuous, infinitesimal movements of players, and discrete events such as shot attempts and turnovers. Transition kernels are estimated using hierarchical spatiotemporal models that share information across players while remaining computationally tractable on very large data sets. In addition to estimating EPV, these models reveal novel insights on players' decision-making tendencies as a function of their spatial strategy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.