Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes (1408.0777v3)

Published 4 Aug 2014 in stat.AP and stat.CO

Abstract: Basketball games evolve continuously in space and time as players constantly interact with their teammates, the opposing team, and the ball. However, current analyses of basketball outcomes rely on discretized summaries of the game that reduce such interactions to tallies of points, assists, and similar events. In this paper, we propose a framework for using optical player tracking data to estimate, in real time, the expected number of points obtained by the end of a possession. This quantity, called \textit{expected possession value} (EPV), derives from a stochastic process model for the evolution of a basketball possession; we model this process at multiple levels of resolution, differentiating between continuous, infinitesimal movements of players, and discrete events such as shot attempts and turnovers. Transition kernels are estimated using hierarchical spatiotemporal models that share information across players while remaining computationally tractable on very large data sets. In addition to estimating EPV, these models reveal novel insights on players' decision-making tendencies as a function of their spatial strategy.

Summary

We haven't generated a summary for this paper yet.