Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel C2C E-Commerce Recommender System Based on Link Prediction: Applying Social Network Analysis (1407.8365v1)

Published 31 Jul 2014 in cs.SI and cs.IR

Abstract: Social network analysis emerged as an important research topic in sociology decades ago, and it has also attracted scientists from various fields of study like psychology, anthropology, geography and economics. In recent years, a significant number of researches has been conducted on using social network analysis to design e-commerce recommender systems. Most of the current recommender systems are designed for B2C e-commerce websites. This paper focuses on building a recommendation algorithm for C2C e-commerce business model by considering special features of C2C e-commerce websites. In this paper, we consider users and their transactions as a network; by this mapping, link prediction technique which is an important task in social network analysis could be used to build the recommender system. The proposed tow-level recommendation algorithm, rather than topology of the network, uses nodes features like: category of items, ratings of users, and reputation of sellers. The results show that the proposed model can be used to predict a portion of future trades between users in a C2C commercial network.

Citations (11)

Summary

We haven't generated a summary for this paper yet.