2000 character limit reached
Microlocal properties of scattering matrices (1407.8299v1)
Published 31 Jul 2014 in math.AP, math-ph, and math.MP
Abstract: We consider scattering theory for a pair of operators $H_0$ and $H=H_0+V$ on $L2(M,m)$, where $M$ is a Riemannian manifold, $H_0$ is a multiplication operator on $M$ and $V$ is a pseudodifferential operator of order $-\mu$, $\mu>1$. We show that a time-dependent scattering theory can be constructed, and the scattering matrix is a pseudodifferential operator on each energy surface. Moreover, the principal symbol of the scattering matrix is given by a Born approximation type function. The main motivation of the study comes from applications to discrete Schr\"odigner operators, but it also applies to various differential operators with constant coefficients and short-range perturbations on Euclidean spaces.