Papers
Topics
Authors
Recent
Search
2000 character limit reached

The cohomological Hall algebra of a preprojective algebra

Published 30 Jul 2014 in math.RT | (1407.7994v6)

Abstract: We introduce for each quiver $Q$ and each algebraic oriented cohomology theory $A$, the cohomological Hall algebra (CoHA) of $Q$, as the $A$-homology of the moduli of representations of the preprojective algebra of $Q$. This generalizes the $K$-theoretic Hall algebra of commuting varieties defined by Schiffmann-Vasserot. When $A$ is the Morava $K$-theory, we show evidence that this algebra is a candidate for Lusztig's reformulated conjecture on modular representations of algebraic groups. We construct an action of the preprojective CoHA on the $A$-homology of Nakajima quiver varieties. We compare this with the action of the Borel subalgebra of Yangian when $A$ is the intersection theory. We also give a shuffle algebra description of this CoHA in terms of the underlying formal group law of $A$. As applications, we obtain a shuffle description of the Yangian.

Citations (69)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.