Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the Accuracies of Multiple Classifiers Without Labeled Data (1407.7644v2)

Published 29 Jul 2014 in stat.ML and cs.LG

Abstract: In various situations one is given only the predictions of multiple classifiers over a large unlabeled test data. This scenario raises the following questions: Without any labeled data and without any a-priori knowledge about the reliability of these different classifiers, is it possible to consistently and computationally efficiently estimate their accuracies? Furthermore, also in a completely unsupervised manner, can one construct a more accurate unsupervised ensemble classifier? In this paper, focusing on the binary case, we present simple, computationally efficient algorithms to solve these questions. Furthermore, under standard classifier independence assumptions, we prove our methods are consistent and study their asymptotic error. Our approach is spectral, based on the fact that the off-diagonal entries of the classifiers' covariance matrix and 3-d tensor are rank-one. We illustrate the competitive performance of our algorithms via extensive experiments on both artificial and real datasets.

Citations (67)

Summary

We haven't generated a summary for this paper yet.