Papers
Topics
Authors
Recent
Search
2000 character limit reached

Duality features of left Hopf algebroids

Published 26 Jul 2014 in math.RA and math.QA | (1407.7112v2)

Abstract: We explore special features of the pair (U*, U_) formed by the right and left dual over a (left) bialgebroid U in case the bialgebroid is, in particular, a left Hopf algebroid. It turns out that there exists a bialgebroid morphism S^ from one dual to another that extends the construction of the antipode on the dual of a Hopf algebra, and which is an isomorphism if U is both a left and right Hopf algebroid. This structure is derived from Phung's categorical equivalence between left and right comodules over U without the need of a (Hopf algebroid) antipode, a result which we review and extend. In the applications, we illustrate the difference between this construction and those involving antipodes and also deal with dualising modules and their quantisations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.